
Software Architecture - Analyzing Architectures

Why Evaluate?

 Tells important properties of the system.

When to Evaluate?

 At the earliest stages, When choosing
between architectures.

Techniques

 Presentation.

 Formal Reviews/Walkthroughs.

 Scenarios.

 Prototypes/POC.

 Skeleton Systems.

Presentation

 Informal explanation to stakeholders.

 Make the audience think deeply of the
architectural decisions.

 Only a shallow level of analysis is possible.

Formal Reviews and Structured Walkthroughs

 Get a group to review.

 Has roles (Moderator, Presenter,
Reviewer)

 Send the review items beforehand (early)

Evaluation using Scenarios

 ATAM (Architecture Trade-off Analysis
Method)

 CBAM (Cost Benefits Analysis Method)

 SAAM (Software Architecture Analysis
Method)

 SBAR (Scenario Based Architecture Re-

 Engineering)

Prototypes & Proof-of-Concept Systems

 Done to mitigate risks and user interfaces.

 Is a functional sub-set of the system.

 Sometimes can be sophisticated therefore
expensive and time-consuming.

 POC - Code designed to prove that a risky
part of the architecture is feasible.

Skeleton Systems

 For validation implements the system'
structure but contains only a minimal
subset of the functionality.

 Most expensive form of validation

Software Architecture Short- note (Scalability)

Factors

• Scalability
– Number of users / sessions /

transactions / operations the
entire system can perform

• Performance
• Responsiveness
• Availability
• Downtime Impact
– The impact of a downtime of a

server/service/resource -
number of users, type of
impact etc

• Cost
• Maintenance Effort

Vertical Partitioning

• Deploying each service on a

separate node

• Positives

– Increases per application

Availability
– Task-based specialization,

optimization and tuning
possible

– No changes to App required
– Flexibility increases

• Negatives

– Sub-optimal resource utilization
– May not increase overall

availability
– Finite Scalability

Clustered Session Management

 No SPOF.

 Instant reads.

 Network I/O for writes and
increase exponentially as nodes
are added.

 Rare chance of stale data.

Database Replication

Master – Slave

– Writes are sent to a single
master which replicates the
data to multiple slave nodes
(application needs to be
changed)

– Simple setup
– No conflict management

required
– Asynchronous/Synchronous

Multi-Master

– Writes can be sent to any of the
multiple masters which
replicate them to other masters
and slaves

– Conflict Management required

– Deadlocks possible if same data
is simultaneously modified at
multiple places.

Vertical Scaling

 Scaling up

 increasing resources without
changing no of nodes.

• Advantages
– Simple to implement
– Easier + Quicker than re-

designing the software

• Disadvantages
– Finite limit
– Hardware does not scale

linearly (diminishing returns
for each incremental unit)

– Requires downtime
– Increases Downtime Impact

Incremental costs increase
exponentially.

Horizontal Scaling

Scaling out, Load balancer could be
HW, SW

Data Partition

• Divide the data
• Vertical Partitioning
• Divide by tables/columns
• Horizontal Partitioning
• Divide by rows
• Joins, etc. are affected

Sticky Session

 Asymmetric load distribution

 Request of specific user always
sent to same server

 Downtime impact - Loss of
session data.

Central Session Storage

 Shared session store cluster

 Single point of failure

 Session read write Network,
Disk I/O

Other Factors for Scalability

• Caching
• CDNs
• Asynchronous

Communication

